Indian Statistical Institute, Bangalore

M. Math. First Year

First Semester - Analysis of Several Variables

Mid-Semester Exam

Date : Sept 10, 2015

Answer any five and each question carries 8 marks. Total marks: 40

E is an open subset of \mathbb{R}^n unless otherwise mentioned.

- 1. (a) Let $f: E \to \mathbb{R}^m$ be differentiable at $x \in E$. Prove that f is continuous at x. (b) Prove that composite of two differentiable function is differentiable.
- 2. (a) Let f: E → R be such that D₁f, D₂f exist on E and D₂₁f exists and continuous at some v ∈ E. Prove that D₁₂f exists at v and D₁₂f(v) = D₂₁f(v).
 (b) If f: E → R has bounded partial derivatives, prove that f is continuous.
- 3. (a) Let E be a convex open set in Rⁿ and a, b ∈ E. If f: E → R is a differentiable function and f'(u)(a) = f'(u)(b) for all u ∈ E, prove that f(a) = f(b).
 (b) Let f: E → R^m be a differentiable map with f'(x) = 0. Prove that f⁻¹({y}) is open for any y ∈ R^m (Marks: 3).
- 4. Let $f: E \to \mathbb{R}^m$ have co-ordinate functions f_1, f_2, \dots, f_m . Suppose $D_j f_i$ exists and continuous on E. Prove that f is differentiable. For n > 1, is the converse true? Justify your answer.
- 5. (a) If f: R² → R has continuous bounded second order partial derivatives, does lim_{||x||→∞} f(x)/||x||³ exist? Justify your answer.
 (b) Let f: E → Rⁿ have continuous partial derivatives and J_f(x₀) ≠ 0 for some x₀ ∈ E. Prove that f is one-one on an open subset N of E containing x₀.
- 6. (a) Find local maxi/mini of $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = 2x^3 3x^2 + 2y^3 + 3y^2$. (b) If $f: E \to \mathbb{R}$ is differentiable and f(tx) = tf(x) for all $t \in \mathbb{R}$ and $x \in E$ with $tx \in E$, prove that $f(x) = \Sigma x_i D_i f(x)$ for all $x = (x_1, ..., x_n) \in E$.
- 7. (a) Can $x = u^2 v^2$, y = 2uv be solved for u and v in a neighborhood of (u, v) = (1, 1). Justify your answer (*Marks: 3*).

(b) Can the system of equations: $3x + y - z + u^2 = 0$; x - y + 2z + u = 0 and 2x + 2y - 3z + 2u = 0 be solved for x, y, u in terms z.